LS. Molecular graphics: *ORTEPII* (Johnson, 1976). Software used to prepare material for publication: *TEXSAN FINISH*. Literature search: *CSSR* (1984).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71596 (36 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HU1059]

References

- CSSR (1984). Crystal Structure Search and Retrieval Instruction Manual. SERC Daresbury Laboratory, Warrington, England.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175-189. Oxford Univ. Press.
- Tajammal, S. & Tipping, A. E. (1990). J. Fluorine Chem. 47, 45-57.

Acta Cryst. (1994). C50, 297-300

Structures of *ap*-8-Bromo-1,4-dimethyl-9-(2-methylbenzyl)triptycene and *sc**(9*S**)-8-Bromo-1,4-dimethyl-9-(2methylbenzyl)triptycene

Takashi Nemoto, Taizo Ono, Akira Uchida and Yuji Ohashi

Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152, Japan

GAKU YAMAMOTO

Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

(Received 23 March 1993; accepted 9 August 1993)

Abstract

Two atropisomers, *ap* and $sc^*(9S^*)$, of the title compound [8-bromo-1,4-dimethyl-9-(2-methylbenzyl)-9,10-dihydro-9,10-*o*-benzenoanthracene, C₃₀H₂₅Br] have been isolated and their structures determined by X-ray diffraction. The molecular structures confirm those assumed by NMR study. The crystal of the $sc^*(9S^*)$ isomer decom-

posed during the transition to the *ap* form at 457.3 K, probably because the two crystal structures are quite different to each other.

Comment

Atropisomerism is defined as stereoisomerism due to restricted rotation about single bonds where the isomers can actually be isolated (Eliel, 1962). Several examples of atropisomerism have been found in 9-substituted triptycene derivatives (Iwamura, 1973; Yamamoto & Oki, 1975; Otsuka, Yamamoto, Mitsuhashi & Oki, 1979; Otsuka, Mitsuhashi & Oki, 1980; Yamamoto, Suzuki & Oki, 1981; Yonemoto, Kakizaki, Yamamoto, Nakamura & Oki, 1985; Tanaka, Yonemoto, Nakai, Yamamoto & Oki, 1988; Oki, Tanuma, Tanaka & Yamamoto, 1988). Recently 8-chloro- and 8-bromo-1,4dimethyl-9-(2-methylbenzyl)triptycene were synthesized (Yamamoto, 1990, 1991). These compounds have three rotational isomers, *ap*, $sc^*(9S^*)$ and $sc^*(9R^*)$, as shown below. The $sc^*(9R^*)$ form may be less stable since the

2-methylphenyl group lies between two *peri* substituents. From the NMR study, the isolated isomers were assumed to be the *ap* and $sc^*(9S^*)$ forms. The differential scanning calorimetry (DSC) measurements performed when the $sc^*(9S^*)$ isomer was heated, produced a weak broad endothermic peak at 457.3 K and then a sharp exothermic peak due to melting at 533.5 K. The endothermic peak was assigned to the transition from the $sc^*(9S^*)$ isomer to the *ap* form by NMR measurements. Since no change in appearance of the crystalline samples was observed during the transition, it was assumed that the transition may occur with retention of the crystal form (Yamamoto, Nemoto & Ohashi, 1992). The molecular structures shown in Fig. 1 confirm those assumed by NMR

study. In the *ap* form, there are two crystallographically independent molecules *A* and *B*. In each molecule the 2methylbenzyl group occupies the opposite position to the bromophenyl moiety. In the $sc^*(9S^*)$ form, on the other hand, the 2-methylphenyl group is directly opposite the dimethylphenyl moiety. The crystal structures of the *ap* and $sc^*(9S^*)$ forms are quite different to each other. This suggests that the crystal of the $sc^*(9S^*)$ form is destroyed when it is transformed to the *ap* form upon heating. In order to ascertain this, the crystal was warmed to 473 K on the four-circle diffractometer using a hot-air flow method. The crystal decomposed and the diffraction peaks disappeared.

Fig. 1. (a) A perspective view of molecule A of the ap rotamer (30% probability) with the numbering scheme. (b) A perspective view of a molecule of the *sc* rotamer (30% probability) with the numbering scheme.

Experimental Isomer (I) (ap) Crystal data C₃₀H₂₅Br $M_r = 465.43$ Triclinic $P\overline{1}$ a = 10.070 (1) Å b = 15.925 (1) Å c = 15.582 (2) Å $\alpha = 115.032 (9)^{\circ}$ $\beta = 102.59 (2)^{\circ}$ $\gamma = 78.09 (1)^{\circ}$ V = 2191. (1) Å³ Z = 4 $D_x = 1.411 \text{ Mg m}^{-3}$

Data collection

Rigaku AFC-4 diffractometer
ω/2θ scans
Absorption correction: none
7082 measured reflections
6911 independent reflections
5098 observed reflections

 $[F > 4\sigma(F)]$

Refinement

Br1A C1A C2A C3A C4A C5A C6A C7A

C8A C9A

C10A

C11A

C12A

C13A

Refinement on *F R* = 0.061 *wR* = 0.068 *S* = 0.874 4470 reflections 673 parameters *w* = 1/[$\sigma^2(F)$ + 0.003413*F*²] (Δ/σ)_{max} = 0.013 $D_m = 1.413 \text{ Mg m}^{-3}$ Density measured by flotation in C₆H₁₂/CCl₄ Cu K α radiation $\lambda = 1.5418 \text{ Å}$ Cell parameters from 21 reflections $\theta = 20.85 - 30.40^{\circ}$ $\mu = 2.650 \text{ mm}^{-1}$ T = 296 KPlate like crystal $0.4 \times 0.3 \times 0.2 \text{ mm}$ Colorless

- $\theta_{\text{max}} = 62.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -18 \rightarrow 17$ $l = 0 \rightarrow 17$ 3 standard reflections monitored every 50 reflections intensity variation: none
- $\Delta \rho_{\text{max}} = 0.73 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.59 \text{ e} \text{ Å}^{-3}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Only the coordinates of the H atoms were refined except for the H atoms attached to C5A, C21A, C22A, C27A, C30A, C21B, C29B, C30B, whose positions were obtained geometrically and not refined. Program(s) used to solve structure: *TEXSAN* (Molecular Structure Corporation, 1985). Program(s) used to refine structure: *SHELX*76 (Sheldrick, 1976). Molecular graphics: *ORTEP*II (Johnson, 1976).

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for isomer (I)

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	z	$U_{\rm eq}$
0.11927 (9)	0.38203 (6)	0.95075 (6)	0.0525
0.2880 (7)	0.4128 (5)	0.6810 (5)	0.0378
0.3957 (8)	0.4106 (6)	0.6374 (5)	0.0512
0.4677 (8)	0.4872 (6)	0.6686 (6)	0.0504
0.4367 (6)	0.5673 (5)	0.7467 (5)	0.0386
0.3902 (7)	0.6197 (5)	1.0388 (5)	0.0448
0.3930 (8)	0.5724 (6)	1.0954 (6)	0.0557
0.3103 (8)	0.5036 (6)	1.0650 (5)	0.0473
0.2228 (7)	0.4811 (5)	0.9779 (5)	0.0384
0.1320 (7)	0.5184 (5)	0.8182 (4)	0.0323
0.2948 (7)	0.6464 (5)	0.8849 (5)	0.0357
0.1488 (7)	0.6861 (5)	0.8703 (5)	0.0379
0.0586 (6)	0.6189 (4)	0.8360 (4)	0.0309
-0.0799 (7)	0.6479 (5)	0.8298 (5)	0.0385

NEMOTO, ONO, UCHIDA, OHASHI AND YAMAMOTO

C14A	-0.1296 (8)	0.7416 (6)	0.8518 (5)	0.0482
C15A	-0.0413(9)	0.8059 (6)	0.8805 (6)	0.0547
C16A	0.0989 (8)	0.7799 (5)	0.8919 (5)	0.0441
C17A	0.2480 (6)	0.4968 (4)	0.7561 (4)	0.0306
C18A	0.3306 (6)	0.5690 (5)	0.7917 (5)	0.0342
C194	0.3032 (7)	0.5979 (5)	0.9517 (5)	0.0350
C204	0 2157 (6)	0.5286 (4)	0.9185 (4)	0.0303
C21A	0.5210 (8)	0.6472 (6)	0.7857 (7)	0.0576
C22A	0.2287(8)	0.3209 (5)	0.6411 (5)	0.0488
C23A	0.0247(8)	0.4500 (5)	0 7780 (5)	0.0361
C24A	-0.0625(6)	0.4354 (4)	0.6812 (4)	0.0315
C254	-0.1524(7)	0.3681 (5)	0.6470 (5)	0.0387
C264	-0.2304(8)	0.3494 (6)	0.5578 (6)	0.0510
C20A	-0.2233 (8)	0.3958 (6)	0.5012 (6)	0.0576
C284	-0.1331(8)	0.3730(0) 0.4617(5)	0.5352 (5)	0.0454
C20A	-0.0545(7)	0.4804(5)	0.5552(5)	0.0380
C204	0.1665 (0)	0.3153 (6)	0.7044 (6)	0.0582
Dr1 P	-0.1005(9)	0.12183 (6)	0.54388 (6)	0.0552
	-0.42207(9)	0.12185(0)	0.34300(0)	0.0352
	-0.0303(7)	0.0913 (5)	0.8591 (5)	0.0300
C2B	0.0606 (6)	0.0912 (0)	0.0301 (3)	0.0400
	0.1774(8)	0.0130(0)	0.8273 (5)	0.0471
C4D	0.1427(7)	-0.0081(3)	0.7515(5)	0.0400
CSB	-0.0004 (8)	-0.1195 (0)	0.4011 (3)	0.0441
C08	-0.1218 (9)	-0.0722(7)	0.4032 (0)	0.0507
C/B	-0.2280 (9)	-0.0031 (6)	0.4317(3)	0.0313
C8B	-0.2743(7)	0.0224 (5)	0.5197(5)	0.0384
C98	-0.2389 (0)	-0.0121 (4)	0.0802(4)	0.0298
CIOB	-0.0423(7)	-0.1452 (5)	0.6140 (5)	0.0352
CIIB	-0.1588 (6)	-0.1817 (5)	0.0288 (5)	0.0332
CI2B	-0.2645 (6)	-0.1102 (5)	0.0037 (5)	0.0322
C13B	-0.3840 (7)	-0.1357 (5)	0.6/12(5)	0.0365
CI4B	-0.3944 (8)	-0.2278 (5)	0.6485 (5)	0.0402
C15B	-0.2864 (8)	-0.2978 (6)	0.6179 (5)	0.0455
C16B	-0.1646 (8)	-0.2745 (5)	0.6085 (5)	0.0399
C17 <i>B</i>	-0.0945 (7)	0.0078 (4)	0.7412 (4)	0.0319
C18B	0.0063 (6)	-0.0668 (4)	0.7078 (5)	0.0320
C19 <i>B</i>	0.1058 (7)	-0.0963 (5)	0.5466 (4)	0.0317
C20B	-0.2124 (6)	-0.0257 (5)	0.5782 (4)	0.0314
C21 <i>B</i>	0.2502 (8)	-0.1510(6)	0.7167 (6)	0.0544
C22 <i>B</i>	-0.1450 (9)	0.1840 (5)	0.8575 (6)	0.0437
C23B	-0.3616(7)	0.0585 (5)	0.7188 (5)	0.0353
C24 <i>B</i>	-0.3955 (6)	0.0729 (5)	0.8142 (5)	0.0355
C25B	-0.5089 (7)	0.1383 (5)	0.8487 (5)	0.0423
C26B	-0.5397 (9)	0.1539 (6)	0.9371 (6)	0.0547
C27B	-0.4648 (10)	0.1080 (6)	0.9923 (6)	0.0607
C28B	-0.3535 (9)	0.0438 (6)	0.9578 (6)	0.0516
C29B	-0.3194 (7)	0.0263 (5)	0.8700 (5)	0.0432
C30 <i>B</i>	-0.5966 (8)	0.1908 (6)	0.7894 (6)	0.0612

Table 2. Selected geometric parameters (Å, °) for

isomer (1)				
C9AC12A	1.553 (9)	C9BC12B	1.540 (11)	
C9A—C17A	1.571 (10)	C9BC17B	1.565 (8)	
C9A—C20A	1.564 (9)	C9B—C20B	1.585 (10)	
C9AC23A	1.541 (11)	C9BC23B	1.527 (9)	
C10A—C11A	1.486 (9)	C10B—C11B	1.511 (12)	
C10A—C18A	1.512 (8)	C10B—C18B	1.527 (8)	
C10A—C19A	1.517 (12)	C10B—C19B	1.521 (11)	
C11A—C12A	1.399 (10)	C11BC12B	1.398 (8)	
C17A—C18A	1.405 (10)	C17BC18B	1.387 (8)	
C19A—C20A	1.408 (10)	C19B—C20B	1.387 (8)	
C12A—C9A—C17A	108.5 (6)	C12B-C9B-C17B	109.4 (5)	
C12A-C9A-C20A	103.1 (4)	C12B-C9B-C20B	102.9 (5)	
C12A-C9A-C23A	109.3 (5)	C12B—C9B—C23B	109.0 (6)	
C17A-C9A-C20A	102.5 (5)	C17B—C9B—C20B	101.4 (5)	
C17A—C9A—C23A	116.5 (5)	C17B—C9B—C23B	116.9 (4)	
C20A-C9A-C23A	115.8 (7)	C20B—C9B—C23B	116.1 (6)	
C11A-C10A-C18A	109.1 (5)	C11B-C10B-C18B	108.6 (6)	
C11A-C10A-C19A	106.0 (7)	C11B—C10B—C19B	105.9 (5)	
C18A—C10A—C19A	105.0 (6)	C18B—C10B—C19B	104.3 (6)	
C10A-C11A-C12A	112.9 (6)	C10B—C11B—C12B	111.6 (6)	
C9A-C12A-C11A	113.6 (5)	C9B—C12B—C11B	115.0 (6)	
C9A-C17A-C18A	112.4 (5)	C9B—C17B—C18B	112.1 (5)	
C10A-C18A-C17A	113.1 (7)	C10BC18BC17B	114.1 (5)	
C10A-C19A-C20A	114.5 (5)	C10B-C19B-C20B	114.8 (6)	
C9A-C20A-C19A	111.0 (7)	C9BC20BC19B	111.4 (6)	

Data collection

Rigaku AFC-5R diffractome-	$\theta_{\rm max} = 27.5^{\circ}$
ter	$h = 0 \rightarrow 36$
ω scans	$k = 0 \rightarrow 36$
Absorption correction:	$l = 0 \rightarrow 15$
none	3 standard reflections
5706 measured reflections	monitored every 100
5482 independent reflections	reflections
2011 observed reflections	intensity variation: none
$[F > 3\sigma(F)]$	

Refinement

Brl

C1 C2 C3 C4 C5 C6 C7

C8 C9 C10 C11 C12 C13 C14 C15 C16

Refinement on F	$\Delta \rho_{\rm max}$ = 1.03 e Å ⁻³
R = 0.083	Δho_{\min} = -0.54 e Å ⁻³
wR = 0.063	Extinction correction: none
S = 1.68	Atomic scattering factors
2011 reflections	from International Tables
328 parameters	for X-ray Crystallography
$w = 1/[\sigma^2(F) + 0.0034F^2]$	(1974, Vol. IV)
$(\Delta/\sigma)_{\rm max} = 0.07$	

The H atoms were refined with fixed isotropic temperature factors except those of the Me groups, whose positions were obtained geometrically and not refined. Program(s) used to solve structure: *TEXSAN* (Molecular Structure Corporation, 1985). Program(s) used to refine structure: *TEXSAN*. Molecular graphics: *ORTEPII* (Johnson, 1976).

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for isomer (II)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	z	U_{eq}
0.27760 (4)	0.18533 (4)	0.23887 (10)	0.0606
0.2462 (4)	0.2719 (4)	0.0990 (8)	0.0482
0.2365 (4)	0.3205 (5)	0.1341 (10)	0.0601
0.2711 (5)	0.3541 (5)	0.1505 (9)	0.0604
0.3183 (4)	0.3439 (4)	0.1339 (8)	0.0503
0.4079 (4)	0.2824 (4)	-0.1377 (10)	0.0490
0.3987 (5)	0.2685 (4)	-0.2465 (12)	0.0639
0.3604 (4)	0.2386 (4)	-0.2746 (9)	0.0537
0.3326 (3)	0.2200 (3)	-0.1838 (9)	0.0446
0.3185 (3)	0.2130 (3)	0.0377 (7)	0.0283
0.3810 (4)	0.2818 (4)	0.0647 (10)	0.0472
0.3926 (3)	0.2388 (3)	0.1398 (8)	0.0361
0.3592 (3)	0.2015 (3)	0.1261 (8)	0.0338
0.3635 (4)	0.1609 (3)	0.1910 (9)	0.0405
0.4012 (5)	0.1564 (4)	0.2667 (10)	0.0566
0.4345 (4)	0.1931 (5)	0.2779 (9)	0.0586
0.4301 (4)	0.2347 (5)	0.2135 (9)	0.0520

Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 25

reflections $\theta = 12.47 - 14.85^{\circ}$ $\mu = 1.80 \text{ mm}^{-1}$ T = 296 KCubic

Colorless

 $0.30 \times 0.30 \times 0.25$ mm

C17	0.2946 (4)	0.2609 (3)	0.0810 (7)	0.0361
C18	0.3304 (3)	0.2976 (3)	0.0974 (7)	0.0360
C19	0.3783 (3)	0.2640 (3)	-0.0552 (8)	0.0353
C20	0.3427 (3)	0.2298 (3)	-0.0733 (8)	0.0327
C21	0.3563 (5)	0.3822 (4)	0.1536 (10)	0.0787
C22	0.2021 (3)	0.2387 (4)	0.0881 (9)	0.0502
C23	0.2839 (4)	0.1696 (4)	0.0275 (8)	0.0427
C24	0.3038 (3)	0.1217 (3)	-0.0180 (8)	0.0365
C25	0.2710 (4)	0.0841 (4)	-0.0275 (9)	0.0545
C26	0.2872 (5)	0.0406 (4)	-0.0729 (12)	0.0664
C27	0.3341 (6)	0.0335 (4)	-0.1059 (10)	0.0672
C28	0.3662 (4)	0.0710 (4)	-0.0942 (9)	0.0533
C29	0.3507 (3)	0.1149 (4)	-0.0499 (8)	0.0360
C30	0.2180 (4)	0.0891 (4)	0.0044 (11)	0.0813

Table 4. Selected geometric parameters (Å, °) for isomer (II)

		()	
C9-C12	1.57 (1)	C10-C18	1.52 (1)
C9-C17	1.57 (1)	C10-C19	1.50 (2)
C9-C20	1.55 (1)	C11-C12	1.40(1)
C9-C23	1.55 (1)	C17—C18	1.44 (1)
C10-C11	1.52 (2)	C19—C20	1.39 (1)
C12-C9-C17	104.9 (7)	C18-C10-C19	106.7 (8
C12-C9-C20	108.3 (7)	C10-C11-C12	112.0 (8
C12-C9-C23	109.9 (7)	C9-C12-C11	113.8 (8
C17-C9-C20	101.8 (7)	C9—C17—C18	110.6 (8
C17-C9-C23	115.0(7)	C10-C18-C17	113.7 (8
C20-C9-C23	116.1 (7)	C10-C19-C20	114.0 (8
C11-C10-C18	105.8 (8)	C9-C20-C19	112.7 (8
C11-C10-C19	107.6 (8)		

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, torsion angles and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71554 (47 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS1064]

References

- Eliel, E. L. (1962). Stereochemistry of Carbon Compounds, pp. 156-178. New York: McGraw-Hill.
- Iwamura, H. (1973). J. Chem. Soc. Chem. Commun. p. 232.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Oki, M., Tanuma, T., Tanaka, Y. & Yamamoto, G. (1988). Bull. Chem. Soc. Jpn, 61, 4309-4314.
- Otsuka, S., Mitsuhashi, T. & Oki, M. (1980). Bull. Chem. Soc. Jpn, 53, 2095-2096.
- Otsuka, S., Yamamoto, G., Mitsuhashi, T. & Oki, M. (1979). Bull. Chem. Soc. Jpn, 52, 3663–3666.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Tanaka, T., Yonemoto, K., Nakai, Y., Yamamoto, G. & Oki, M. (1988). Bull. Chem. Soc. Jpn, 61, 3239-3248.
- Yamamoto, G. (1990). Chem. Lett. pp. 1373-1376.
- Yamamoto, G. (1991). Chem. Lett. pp. 741-744.
- Yamamoto, G., Nemoto, T. & Ohashi, Y. (1992). Bull. Chem. Soc. Jpn, 65, 1957–1966.
- Yamamoto, G. & Oki, M. (1975). Bull. Chem. Soc. Jpn, 48, 2592-2596.
- Yamamoto, G., Suzuki, M. & Oki, M. (1981). Angew. Chem. Int. Ed. Engl. 20, 607-608.
- Yonemoto, K., Kakizaki, F., Yamamoto, G., Nakamura, N. & Oki, M. (1985). Bull. Chem. Soc. Jpn, 58, 3346-3350.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1994). C50, 300-302

5,5-Diphenyl-1*H*,2*H*,5*H*-imidazo-[1,2-*a*]imidazole-3,6-dione

J. KAROLAK-WOJCIECHOWSKA

Institute of General and Ecological Chemistry, Technical University, 90-924 Łódź, Poland

K. KIEĆ-KONONOWICZ

Institute of Pharmaceutical Chemistry, Medical Academy, 31-065 Kraków, Poland

(Received 14 January 1993; accepted 27 July 1993)

Abstract

The conformation of the title molecule, $C_{17}H_{13}N_3O_2$, is generally similar to the conformations of analogous compounds. Both five-membered rings possess envelope conformations. The dihedral angle between the mean planes of these two rings equals 5.33 (8)°. The molecules in the crystal are joined by an intermolecular hydrogen bond N1—H4···O1(x, $\frac{1}{2} + y$, z) of 2.869 (3) Å.

Comment

Hydantoins are classified as compounds that influence the central nervous system (CNS) (Vida, 1977). The crystal and molecular structures of pharmacologically active hydantoins have been the subject of many papers (Heeg, Subramanian & Dryhurst, 1986; Camerman, Mastropaolo & Camerman, 1983; Uno

Fig. 1. Molecular structure and atomic numbering scheme for the title compound.

Acta Crystallographica Section C ISSN 0108-2701 ©1994